

Utility-Scale Energy Storage

Energy Storage Anywhere, Anytime Mobile, Scalable and Reliable Clean Energy Storage

Australian Flow Batteries (AFB) presents the Vanadium Redox Flow Battery (VRFB), a 1 MW, 5 MWH battery that is a cuttingedge energy storage solution. Designed for efficient, long-term energy storage, this system is ideal for applications requiring high-capacity, reliable power.

KFY FFATURES

Utility Scale Power

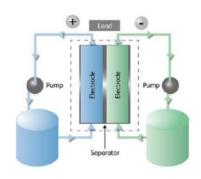
scale applications, storage of up to 5 MWh long-duration energy

Configuration

capacities. Designed

Durable Design

The robust architecture degradation over the extended lifespans. Tanks are reinforced stiffeners. RCC underground pits are


Renewable

CPVC/PVC for smooth

TECHNOLOGY

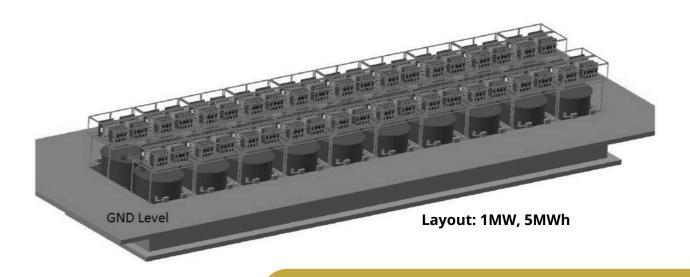
Australian Flow Batteries VRFB is based on vanadium redox chemistry. VRFBs have the following advantages:

- Tolerate fluctuating power supplies.
- Maintain 20,000+ charge/discharge cycles at maximum rates.
- Do not over-charge or over-discharge.
- Operates at ambient temperatures between -5°C to 50°C without heating or cooling.
- Electrolyte used in VRFB is non-flammable with a lowtoxicity.
- A 20-year service life, with no degradation.
- More sustainable to produce, environmentally friendly and fully recyclable.

$$VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$$

 $V^{2+} \rightleftharpoons V^{3+} + e^-$

$$V^{2+} + VO_2^+ + 2H^+ \rightleftharpoons VO^{2+} + V^{3+} + H_2O$$


Utility-Scale Energy Storage
Energy Storage Anywhere, Anytime
Mobile, Scalable and Reliable Clean Energy Storage

Model	S1	S2
Discharge Power (MW)	1	2
Output Capacity (MWh)	5	10
DC Voltage Range (VDC)	760 - 1160	760 - 1160
Output Voltage (VAC) ¹	415, 3-Ph	415, 3-Ph
Charge Power (MW)	1	2
Charging Mode CC (A)/CV (V)	1000/1160	2000/1160
Energy Block	0.5 MWh/16 KLTanks/20 Nos	1 MWh/32 KL Tank/20 Nos
Power Block	12.5 kW Stacks/80 Nos	12.5 kW Stacks/160 Nos
Battery Footprint ²	28 m x 5.4 m	33 m x 7 m
Footprint Including Building	35 m x 12 m	40 m x 15 m
DOD	100%	
Cycle Life	Unlimited	
DC-DC Efficiency	70%	
Ambient Temperature ³	-5 deg C – 50 deg C	
BMS/EMS	Modbus TCP/IP	

The above building blocks can be AC coupled to build >100 MWh systems.

Note:

- 1.1 Other voltage options available such as 480V, 3 Ph
- 2.2 > 100 MWH per acre.
- 3.3 Wider Temperature Range can be managed by additional cooling/insulation/heating

